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A simple derivation is given of the parabolic flow first described by John (1953) 
in semi-Lagrangian form. 1% is shown that the scale of the flow decreases like 
t-3, and the free surface contracts about a point which lies one-third of the way 
from the vertex of the parabola to the focus. 

The flow is an exact limiting form of either a Dirichlet ellipse or hyperbola, as 
the time t tends to infinity. 

Two other self-similar flows, in three dimensions, are derived. In  one, the free 
surface is a paraboloid of revolution, which contracts like t-2 about a point lying 
one-quarter the distance from the vertex to the focus. In  the other, the flow is 
non-axisymmetric, and the free surface contracts like k5. 

The parabolic flow is shown to be one of a general class of self-similar flows in 
the plane, described by rational functions of degree n. The parabola corresponds 
to n = 2. When n = 3 there are two new flows. In  one of these the scale varies 
as i5' and the free surface has the appearance of a trough filling up. In  the other, 
the free surface resembles flow round the end of a rigid wall; the scale varies 
as t-4.17. 

1. Introduction 
The review of free-surface flows by Gilbarg (1960) convincingly emphasizes 

the scarcity of known, exact solutions to time-dependent flows with a free 
surface, particularly when gravitational terms are included. Among the known 
solutions are the accelerated cavities of von KBrmiin (1949) and Gilbarg (1952), 
which have also been extended by Yih (1960); the similarity flows for the impact 
of a cone on a free surface (Garabedian 1953), and some interesting examples of 
free-surface flows derived by an inverse method due to John (1953). Not men- 
tioned by Gilbarg (1960) are the long-standing exact solutions known as 
Dirichlet ellipsoids (Lamb 1932, p. 382), which were first derived by Dirichlet in 
1860, and partly rediscovered by John (1952) and Taylor (1960). A hyperbolic 
form of this solution was recently discussed by Longuet-Higgins (1972) in relation 
to the appearance of instabilities at the crest of a standing wave. 

Among the very simplest of non-trivial solutions to the time-dependent 
problem is the flow derived in $2 below. In  this, the free surface takes the form 
of a parabola, whose linear dimensions vary as t-3 (where t denotes the time) and 
which therefore reduces to a thin sheet as t -+ co. This flow was in fact discovered 
by John (1953), in whose treatment, however, the nature of the solution is some- 
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what hidden by the inclusion of gravity in a non-essential way (see $7, below). 
When viewed in the natural frame of reference it becomes clear that the flow is 
self-similar, and that the parabolic surface contracts (or expands) about a fixed 
point one-third of the distance from the vertex to the focus. 

The purpose of the present paper is to investigate the possibility of other flows 
of a similar kind. In  $ 3 we derive two flows in three dimensions, in which the free 
surface contracts like t-2 and t” respectively. The possible connexion of all these 
flows with the Dirichlet ellipsoids is discussed in $ 4, and in $$ 5 and 6 it  is shown 
that the parabolic flow of $ 2  is in fact an exact asymptotic form of the two- 
dimensional Dirichlet hyperbola. The analysis is given in some detail because of 
a possible future application to the theory of slender breaking waves (Longuet- 
Higgins & Cokelet 1976). 

In  the second part of the paper ($$ 7-9) the parabolic solution is generalized 
in another direction, namely to higher-order rational flows in a plane. For this 
purpose, the semi-Lagrangian formulation of John (1 953) proves particularly 
useful. We show that for each positive integer n there exist two classes of self- 
similar, time-dependent flows, with a free parameter A. By an appropriate choice 
of A one can generally exclude certain singularities in the flow. The case n = 2 
yields the aforementioned parabolic flow and another self-similar flow codned 
to the outside of a parabolic surface. The case n = 3 gives rise to a solution 
representing a fluid filling up a trough in an otherwise plane surface, and another 
solution representing a free-surface flow round the end of a solid wall. 

All the flows discussed in this paper are gravity-free. The paper is intended to 
prepare the ground for a future study of time-dependent flows incorporating 
gravity in an essential way. 

2. A two-dimensional, free-surface flow 

introduction. 
We shall first derive by a direct method the parabolic flow mentioned in the 

Consider the velocity potential 

where (x, y) are rectangular co-ordinates, t is the time and P and A are constants 
to be determined. Taking the density as unity, we find that the pressure p ,  from 
Bernoulli’s equation, is given by 

x P2 
th+l -k - 2t2h +f) 

- p =  Y2  -+(l-A)P- 
t2 

where f is a function of the time only. Hence the rate of change of p following 
a fixed particle is given by 

At the free surface both p and Dp/Dt must vanish. The vanishing of (2.2) and 
(2.3) will represent the same d a c e  provided the coefficients of corresponding 
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terms are in proportion. Hence, either h = 1 or h = 4 .  If h = 1 then from (2.1) 
we may, by choice of a different frame of reference, take P = 0, so 

say. The free surface is then y 2  = - Q/t2,  which represents two planes parallel to 
the x axis. Leaving aside this flow, which has been described and demonstrated 
experimentally by Longuet-Higgins (1972),-j- consider the case h = 4. The term5 
in p and DplDt dependent on t alone will then be in proportion to the terms in x 
provided that 
A 

df 4 5P2 -&+tf=- t9 ’ 
whence we have 

5 P 2  Q 
f = -atS+g, 

where Q is an arbitrary constant. The velocity potential is now 

and the free surface is 
x 3 P 2  Q 

y2= 3p-+----  
t3 4 P t2’ 

where P and Q are both arbitrary constants. 
To fix the ideas, let us suppose P < 0 and t > 0. Then setting 

a = - t P / t 3 ,  c = Q / 3 P  (2.7) 

y2 = - 4 a ( x - Q a - c t ) .  (2.8) 

the equation of the free surface becomes 

When c = 0 this obviously represents a parabola, with vertex at the point 
(+a, 0) and distance 01 between vertex and focus (see figure 1 ) .  

As t increases, so a, and all the dimensions of the parabola, vary as t-3. The free 
surface contracts towards the origin 0 as the centre of similitude. This point lie5 
inside the parabola, at one-third of the distance from the vertex to the focus. 

When t is small, the free surface (for bounded values of y) is almost plane. 
When on the other hand t+oo the free surface becomes very elongated in the 
z direction, producing a thin jet of fluid, ejected to the left with velocity 

$, = .It + P/t4 

(this quantity being negative when x < $01). When t is large, 4, N x/t, so that 
a given particle travels leftwards with almost uniform velocity. At a fixed point, 
however, the velocity tends to zero. 

Remarkably, (2.8) shows that for any value of Q, not necessarily zero, a free 
surface may be found on which the pressure is not only constant but constant 

t Note that in equation (6.4) of that paper, the last term should be t-1. 
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FIGURE I.  A cross-section of the free surface in the two-dimensional flow described in 82. 
The curve is a parabola which contracts about the point 0, lying one-third of the way from 
V to 3’. The distance V F  is proportional to P. 

following a particle. The surface always has the form of a parabola, parallel to 
the surface corresponding to fJ = 0, but travelling to  the right with constant 
velocity c. To produce this flow we simply reduce the pressure at infinity by the 
amount Q/t4. 

The velocity normal to the median plane of the jet is 

A/ = - Y l h  
which is always independent of x. It follows that any line of particles parallel to 
the median plane always remains so, and that the flow may be realized by the 
ejection of fluid from between two approaching parallel plates. A more interesting 
realization is likely to be in the jet of water formed by a ‘plunging breaker, 
during the short time that the jet is thin and almost horizontal (see Longuet- 
Higgins & Cokelet 1976). 
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3. Self-similar flows in three dimensions 

more general potential 
Let (x, y, x )  be rectangular co-ordinates in three dimensions, and consider the 

(3.1) 
1 X 

2t tk ' 

where in order to satisfy Laplace's equation we specify 

@ = -((X2-my2-n22)+P- 

m + n  = 1. 
As in $2 we have 

(3.3) 
1 Px P2 

- p  = - [m(m + l)y2+n(n + 1)z2] + (1 - A )  th+l +SA + f, 2t2 

where f is a function oft only, and 

On comparing coefficients of y2 and 9, we see that the surfaces p = 0 and 
Dp/Dt = 0 will coincide only if (m, n)  = ( 1 , O )  or (0, 1), which cases are equivalent 
to the two-dimensional flows discussed earlier; or if (m, n)  = (2, - l), (4, &) or 
( - 1,2). Taking first the case 

(m, n) = (4, 4) 

FIGURE 2. Sketch of the free surface in the &symmetric flow given by (3.5). The surface 
contracts about the point 0, lying one-quarter of the distance from V to the focus P.The 
dimensions vary &B t - 2 .  
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and comparing coefficients of y2 and x we have 

h = 2(m+ 1) = 3, 

and from the terms independent of x and y 

7 P 2  Q 
f = -ijT+$ 

Hence we obtain for the velocity potential 

and for the free surface 
@ + 2 2  = - 4 P ( x - @ - c t ) ,  

where p = -+PIP, c = &/2P. 

Thus the free surface is a paraboloid of revolution (see figure 2 ) ,  in which the 
dimensions vary as iY2. The surface expands or contracts about a point lying 
one-quarter of the distance from the vertex to the focus. 

If on the other hand we take (m, n) = ( - 1 , 2 )  we have 

h = Z(n3-1) = 6 

and 

FIUURE 3. Sketch of the free surface in the flow described by (3.8). Though the flow is 
three-dimensional, the surface is a parabolic cylinder. The surface contracts about a line 
through 0, lying two-fifths of the distance from the vertex to the focal line. The dimensions 
vary as t 4 .  
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Then the velocity potential is 
I X 

2t P 
4 = -((X2+y2--222)+P- 

and the free surface is 
22 = - 4 y ( z - $ y - c t ) ,  

where y = -&PIP, c = &lap. 
(3.9) 

(3.10) 

Thus the flow is the sum of an axisymmetric flow and of a uniform translation 
in the x direction. The free surface is a parabolic cylinder (see figure 3) whose 
dimensions vary as t-6. The surface expands or contracts about a line which lies 
Q of the distance between the vertex and the focal line. 

4. The Dirichlet ellipsoids 
It is natural to discuss the relation of the flows described in $42 and 3 to the 

ellipsoids of Dirichlet (1860; see also Lamb 1932, $382). In these, the free surface 
is given by 

5 2  y2 22 
-+-+- = 1, a2 b2 c2 (4.1) 

where a, b and c are functions of the time t only, satisfying 

abc = constant = M (4.2)  

(4.3) 

and, in the absence of gravitational attraction and vorticity, 

& = bb = ca, 

where a dot denotes differentiation with respect to t .  These last equations have 
the integral 

and the corresponding velocity potential is 

ci2 + 62  + c2 = constant = ~2 (4.4) 

In  two cases the integrals (4 .2)  and (4 .4)  suffice to determine the motion, 
namely, first, when E E 0 and the motion is two-dimensional, in which case 

b = Mica, 6 = - Malca2 

and so a = L( 1 + M2/c2a4)t; (4.6) 

and second, when c = b and the flow is axisymmetric, in which case 

b2 = M/a ,  h2 = Ma2/4aS 

and so ci = L( 1 + M/4a3)-k (4.7) 

One might expect that the solutions found in $$2 and 3 were special cases of 
(4 .6)  or (4 .7) .  This turns out to be untrue, but we can nevertheless show that they 
are limiting cases in a certain sense. 

39 FLM 73 
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In  the following sections we shall study a special two-dimensional case which 
in fact corresponds to the limit c --+ 00 with b2 replaced by - b2. This analysis is 
given fully, since it may have later application to the theory of breaking waves 
(Longuet-Higgins & Cokelet 1976). 

5. The Dirichlet hyperbola 
We shall now describe how the parabolic flow derived in 8 2 is related to a class 

of exact, irrotational flows in which the free surface haa the form of a variable 
hyperbola. 

In  the hyperbolic flow discussed by Longuet-Higgins (1972) the velocity 
potential is given by 

and the free surface by 
$ = +A(x~-zJ') (5.1) 

(5.2) - ( A  + A 2 ) 9  + ( A  - A2)y2 = R2A4, 

where A is a function of t  only, defined by 

R and N being any positive constants. It is convenient to write 

A N  = a, t /N  = T, 

so that a and r are related simply by 

Generally, when a > 0, the substitution 

enables T to be expressed as 
a = cot (+p) 

r = tan (@) (1 - +sin2p)a - E(P, 2-4) + *F(p, 2-4), (5.6) 

where E and P are elliptic integrals, and then a may be plotted against T with 
/3 as a parameter (see figure 4 of Longuet-Higgins 1972).7 

Certain aspects of the motion may be expressed very simply in terms of a. 
Thus in Lagrangian co-ordinates we have 

2 = $ z = A ~ ,  y = $  21 = - A 9  

so x = x,exp (/:A&) = xoF(r),  y = yoexp 

where (x,, yo) denote the co-ordinates a t  time t = 0 and 

In equation (4.6) of that reference, the modulus of the elliptic integral should be 2 3  
ws in equation (5.6). 
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0 0.5 1 .o 
7 

FIGURE 4. Graphs of the functions F ,  dFId7 and d2F/dr2, which give the particle 
displacement, velocity and accelerations as functions of the time. 

Since 

we have also 

The particle velocity and acceleration x are proportional respectively t o  
dF/dr and d2F/dr2. The quantities F ,  dF/dr and d2F/dr2 are plotted in figure 4 
above. 

F = (( 1 +a4)$ + l}t/a. (5.9) 

Prom (5.2), the free surface may be expressed as 

where 

x2/a2 - y2/b2 = 1, 

- - F ( 4 ,  
R a 
N{(l+a4)h-l}* - N 

a = -  

R a 
N ((1 + ad)* + l}* 

b = -  
N 

So the angle 2y between the asymptotes is given by 

tany = b/u = F-2 

tan 2y = 2 tanyl(1- tan2y) = a2. 

and we have 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

Lastly, the radius of curvature p at the vertex of the hyperbola is given by 

p = b2/a = (R/N) F-3. 

The angle 2y is shown as a function of r in figure 5. 

(5.14) 

39-2 
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FIGTJRE 5. Graph of the angle 2y between the asymptotes of the hyperbola, 
&s a function of the dimensionless time r.  

When r -+ + 0 we have from 

so 

(5.5) 

(5.15) 

and P(T) N exp(+(37)%}. (5.16) 

Hence x - xo{l++(37)3), .iVk - x,,(37)4, N% - -xO(3r)4  (5.17) 

and similarly for y, So as T + O  the displacements remain finite, though the 
velocities and accelerations become infinite. At T = 0 itself (5.12) and (5.13) show 
that the angle between the asymptotes is 90°, and from (5.14) the radius of 
curvature at the vertex equals R/N.  

Hence we may define 7 precisely, as the elapsed (dimensionless) time since the 
asymptotes were mutually perpendicular. 

6. The form of the Dirichlet hyperbola as t-tco 

?-+a then a+O, and the appropriate expansion of the integral (5.5) is 
Consider now the asymptotic form, as t + co, of the solution given in 5 5. When 

1 laS 1 . 3  u7 1 . 3 . 5  all 
a 2 3 1.222.7+1.2.323.11-' .*y (6.1) 

(6.2) 

7 =A+-+-----  

where A = P($~T,  2-)) - 2E(+7rY2-*) = - 0.847213. 
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Writing T - A = ~  (6.3) 

we have a-1 = a-*a3+&a7- ..., (6.4) 

so by successive approximation 

and from (5.9) 
a-1 = a-+Qo-3+ ... 

F(7) = 2 q ~ - & p - 3 +  ...). 

It will be seen from figure 4 that the linear term already gives a good approxima- 
tion when T > 0-5. 

Consider the form of the free surface as T-+OO. Then (5.11) and (6.6) show that 

a N 2bRIN = a,, b N (244-l R/N = b, (6.7) 

say, so that the hyperbola becomes elongated in the x direction and correspond- 
ingly thin in the y direction. Moreover the vertex ( - a, 0) travels to the left with 
almost uniform velocity 

- dal/dt = - 24R/N2. (6.8) 

a = a,+a2+ ..., b = b,+b,+ ..., (6.9) 

More accurately we have 

where 
R l  

J 2 g - 3 ,  b - ____ a2 = --- 
- N24,/2Qo-5 N 24 

(6.10) 

and in general an/an-l and bnlbn-, are of order r4. 
Transforming to new co-ordinates 

x’ = x+a,, y’ = y (6.11) 

corresponding to an observer moving to the left with uniform velocity - da,/dt, 
and setting x = x‘ -al in (5. lo), we find for the new equation of the free surface 

a2 b2 

or y2 = (b2/a2) [ ( ~ ’ - a , ) ~ -  (a,+a,+ ...),I (6.12) 

precisely. If now x’ is of order ~r-~a,, we have t o  a first approximation 

(x’ - a1)2 y2 - - 1  

y2 = ( - b;/a;) ( 2alx’ + 2a,a2). 

But writing 

we have from (6.10) 

so that (6.13) reduces to 
a, = -&a, 

ya = - 44%’ -+a), 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

which is of the same form as (2.8). 

near the tip of a Dirichlet hyperbola, as the time t tends to Mnity.  
It follows that the self-similar flow described in 9 2 is a limiting form of the flow 
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It is interesting that the parabolic described in 9 2, though only an asymptotic 
form of the hyperbolic flow, is nevertheless an exact solution in itself. Higher 
approximations to the hyperbolic flow, for large values of r ,  can easily be 
derived by including higher-order terms in (6.12). But the corresponding 
solutions are not exact, being valid only asymptotically for large 7. In  the 
following section of this paper we shall describe a class of rational solutions which 
is indeed exact, and which effectively generalizes the solution described in $2. 

7. A semi-Lagrangian method 
John (1953) has given a general method for finding two-dimensional, time- 

dependent, irrotational flows with a free surface, as follows. Set x + iy = [, and 
let us seek solutions in the form 

f = a@, t ) ,  (7.1) 

where w is a Lagrangian co-ordinate (constant following a given particle) and 
6 is an analytic function of w.  Thus the particle velocity and acceleration are 
respectively Ct and Qt. The pressure gradient is in the direction of the vector 
(Ctt + ig), where g denotes gravity. 

On the free surface w is assumed to be real, so the tangent is in the direction 
of the vector Q. Hence the free-surface condition may be written as 

Qt + ig = i r (w,  t )  6, w real, (7.2) 

where r is a function which is real on the boundary. The velocity potential 
x = + i$ has to satisfy 

d x / d c  = u - ~ v =  [ c t ( W * , t ) ] *  (7.3) 

on the boundary, which may be done by taking 

x = J [Ct(w*, t)l* t )  

throughout the fluid. However dXld5 must be a single-valued analytic function 
of 6 throughout the fluid. Hence we have the restriction 

[ct (w*,  t ) ]  * is a single-valued analytic function of [ (w ,  t ) .  (7.4) 

John (1953, p.503) shows that all these conditions are satisfied by the 
expressions 

where C is an arbitrary constant. We remark, first, that if the motion is referred 
to a frame of reference accelerating downwards with velocity g the terms in g 
disappear. The solution is therefore essentially gravity-free. Second, setting 
g = 0 in (7.5) we have 
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which is identical with (2.5) if we rotate the axes through 90' and take 

c2= - 3P. 

8. A general class of rational flows 
Consider the polynomial expression 

where n is any positive integer, and co, . . . , c, and h are constants to be determined. 
On substituting into (7.2), taking g = 0 and r independent of w, and equating 
coefficients of wn-l, w,-~, . . . , we obtain 

h(h + 1 )  c1 = ncortA+2, 

2h(2h + 1) c2 = (n - l)c,rtA+2, 

343h + 1 )  c3 = (n - 2 )  c2rth+2, 

nh(nh + I)c, = 1 . c,-,rtA+2, 

which relations are satisfied by taking r = h/tA+2, c,, = 1 and 

n! 1 
cm = m! (n - m) ! ( A  + 1 )  ( 2 h  + 1) . . . (mh + 1 )  ' 

provided that h =I= - 1, - 4, . . ., - n-1. So, writing 

m = 1, ..., n, 

t n q  = x + i y, h-lt"A+l [& (oJ* ,~ ) ] *  = U - i V ,  t * ~  = Q, (8.4) 

we have from (8.1) 
X+iY = Z ( Q ) ,  u-iv = W(Q),  (8.5) 

To avoid a singularity, any zero of dZ/dQ in the domain of the fluid must also be 
a zero of d W / d Q .  This gives us in general a condition to determine A. Then the 
co-ordinates (x, y) and the velocity components (u, w) are given parametrically by 

(8.7) x + iy = t-"AZ, u - iv = ht+A+l) w. 
In  the special case n = 2 we have 

2i 1 

2i 2 

(8.8) z = Q2+- 
A+ 1 12- (A+ 1) (2h+ 1)' 

W =  h+l + (A+ 1)  (2h+ 1) * (8.9) 

Now dZ/dQ vanishes a t  l2 = -i/(h+ l), but since dW/dQ has no zeros, the 
branch-point cannot be annulled. Nevertheless the solution given by (8.8) and 
(8.9) can, for general A, still represent the flow outside a parabolic free surface, 
whose scale, from (8.4) varies like PA. 



616 M .  S. Longuet-Higgins 

F ~ a m  6. The form of the free surface in the self-similar flow described by (8.14). The 
points A and B are branch-points; A is annulled by choice of A. The curve expands about 
the origin with dimensions proportional to #. 

In the more typical case n = 3 we have 

(8.10) 

1 
Q- 3i 3 2 = Q3+- Q2- 

W =  

h + l  (h+l)(Zh+ 1) (A+ 1)(2h+1)(3h+1)’  

(A+ 1) (Zh+ 1)‘(3A+ 1)’  
31 

Q-  3i 6 - 
h+ 1 i22+ (A+ 1) (2h + 1) 

The derivatives of 2 and W vanish when 

2i 1 
Q2+- Q- 

h+l ( h + 1 ) ( 2 h + l )  = O5 

i 1 
x q Q + ( h + ( n ) ( 2 h + 1 )  = O- 

Hence 

and on substituting in (8.11) we find 

0 = i/(Zh + 1) 

7h+4  = 0, 

A = - *  Q a - 7 i .  7 ’  so 

The Lagrangian co-ordinates are given by 

73 
X + i P  = Q3+7iQ2+49Q-- 15 i* 

(8.11) 

(8.12) 

(8.13) 

(8.14) 
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so the free surface, for which !2 is a real parameter, is given by 

(8.15) 
73 Y = 7w--  
15' 

x = Q3+49sz, 

This is shown in figure 6. At large distances the tangent becomes nearly parallel 
to the X axis. From (8.11) the branch-points are given by 

16.73 
sz=-7i ,  z=-- 15 i (8.16) 

and 
7i 16.73.  

1 5 . 9 "  
Q = -  3 ,  z=- (8.17) 

The branch-point (8.16), which is on the - Y axis, is already annulled, the other 
is not. So the solution is valid for a fluid filling the space on the convex side of the 
free surface. The motion is like an expanding trough. From (8.7), the dimensions 
of the trough vary like P A ,  that is like H. By reversing t we have a description 
of 8 trough 'filling up', though it must be remembered that the solution is 
essentially gravity-free. 

9. A second class of flows 
Consider now the alternative expression 

Substituting into (7.2) and comparing coefficients as before we have 

(A - 1) Ad, = ndortA+2, 

(2A- 1) 2Ad2 = (n- l)d,rtA+2, 

(3A - 1) 3Ad3 = (n - 2) d , ~ t A + ~ ,  

(nA - 1) nhd,, = 1 . d,,-lrtA+2, 

which are satisfied by taking r = A/tA+2, do = 1 and 

m = 1, ...,n, (9.3) 
n! 1 

dm = 
m!(n-m)!(A-1)(2A-I) ... (mh-1)' 

provided that h += 1, Q, ..., n-l. Now writing 

t"-lg = X+iY, tn+3J* , t ) ] *  = u+iv, tA0.J = sz (9.4) 

we have X+iY = Z(Q), u+iv = W(Q),  (9.5) 

where now z = Rn+id1CP-1-d 2 C P - 2 -  id3On-3+ ..., 
(9.6) 



618 M .  8. Longuet-Higgins 

We now proceed as before. In  the case n = 2, 

i 
2i I 

2 = 522+-Q- 

1 w = 522+2iQ+-. 
A-I 

h-1 (h- l ) (2h-l)’  
(9.7) 

The only zero of dZ/dQ is when Q = -i/(h - I), and on inserting this value in 
dW/d52 = 0 we get h-  1 = 1 so h = 2. This gives the solution of $7. 

In  the next case, n = 3, we have 

(9.8) I i 
( A  - 1) (2h - 1) (3h - 1) ’ 52- 

3i 3 z = 523+- 522-  

52- 
3 w = 523+33522+- 

h - 1 ( A  - 1 )  (Zh - I )  

i 
h-1 ( h - l ) ( 2 h - - I )  

and so any root of 

O2 + h-l 2i Q -  ( A  - 1) 1 (2h - 1) = o  (9.9) 

lying within the domain of 52 must also be a root of 

Subtracting we find 

and on substituting back into (9.9) we have 

R2+ 2iQ + ( A  - 1)-1 = 0. 

52 = ih/(h-2)(2h-1) 

(9.10) 

(9.11) 

P(h-  I)  +2h(h-2) (2A- 1) + (h- 2)2(2h- I) = 0 

or 7h3-20h2+16h-4 = 0. (9.12) 

The only real root of this equationt is h = 1.7231, corresponding to Q = - 2.544.3. 
So from (9.4) we have g = t-4.169Z, where 

Z = Q3 + 4*1488Q2 - 1.696052 - 0.13563. (9.13) 

Hence the free surface is given parametrically by 

X = Q3- 1-6970Q, Y = 4.1488Q2- 0.1356, 52 real (9.14) 

(see figure 7). The branch-points are given by the roots of (9.9), which are 
Q = - 2.5441; or - 0.22223, conespanding to Z = - 39.144 or 0-0254i. The branch- 
point at - 39.14.3 also corresponds to a root of W ,  so there is no singularity there. 
The branch-point a t  0.02543 is an irreducible branch-point of the flow, as we 
would expect from the fact that on this side of the origin the free surface inter- 
sects itself. The solution will, however, correspond to a physical flow if one sheet 
of the Riemann surface is excluded, say by a rigid boundary along the - Y axis, 
as in figure 7. Physically, the solution represents the flow round the end of a solid 

t The complex roots of (9.12) do not represent solutions, since h would have to be 
replaced by A* in (9.10). 
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FIGURE 7. The form of the free surface in the self-similar flow described by (9.13). The 
branch-point B is excluded from the flow. The free surface contracts like t-'"'' and on the 
right becomes parallel to the 9 axis. 

wall. As t increases to infinity the point of contact of the free surface moves out 
to the end of the wall, and the free surface curls tightly round it, becoming 
eventually almost plane and perpendicular to it. 

Solutions for higher values of n may be investigated similarly. 
It will be noticed tha,t because the function ~ ( w ,  t )  is the same in (8.2) and (9.2), 

and (7.2) is linear in g, any linear combination of (8.1) and (9.1) will satisfy (7.2) 
also, and indeed we may add expressions corresponding to different values of n. 
However, (8.4) and (9.4) show that the relation between g and 2 is not the same 
in the two cases, or for different values of n, so that the corresponding expressions 
will not represent self-similar flows. 

An exception might occur for two values of n, say n, and n2, for which 

n,h = n,h- 1, h = l/(n2-nl). 

But this possibility is excluded by the restrictions on h which are implicit in 
(8.3) and (9.3). 
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Hence the two classes of flows given by (8.1) and (9.1) are possibly the only 
self-similar flows of polynomial type that can be readily realized. (We can of 
course replace w by any rational function of w alone, without essentially altering 
the flow.) 

10. Discussion and conclusions 
We have shown that the simple, parabolic flow described in 5 2 may be general- 

ized in two ways: first, to three dimensions, where two similar types of motion 
exist, both related to the Dirichlet ellipsoids. Just as the parabolic flow has been 
shown to  be an exact, limiting form of the Dirichlet hyperbola, so it may be 
shown that the other two flows described in $ 4  are exact limiting forms of axi- 
symmetric hyperboloids having two and one sheets respectively. 

The second generalization of the parabolic flow was to  higher-order rational 
flows in the plane, using the semi-Lagrangian formalism of John. For each value 
of the positive integer n we found two possible flows. When n = 2, these are 
respectively the parabolic flow mentioned earlier, and another solution repre- 
senting flow on the outside of a parabola. When n = 3 ,  we obtained two new 
solutions, one representing a ‘trough’ expanding like e; the other, a flow curling 
round the end of a solid wall. Higher values of n will yield similar flows, generally 
restricted to part of the plane. 

All the solutions described in the paper are essentially gravity-free, which may 
limit their application to highly accelerated flows, or to special situations where 
gravity can be neglected (see for example Longuet-Higgins 1972, $8). To extend 
such solutions to  situations where gravity is important, and particularly to the 
breaking of surface waves, is a problem to be considered in a subsequent paper. 
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